

ELECTRICAL LOAD ESTIMATING

This worksheet can be used to determine the required size of an electrical panel for an existing dwelling with 120/240 or 120/208 volt, three wire, single phase services (2013 California Electrical Code Article 220).

1.	Square footage of existing living area 1×3 watts/sq.		=	_watts
2.	20 amp small appliance circuits @ 1500 watts each		=	_watts
3.	Laundry circuits @ 1500 watts each		=	_watts
4. E	lectrical appliances at nameplate value ²			
	a. Range		=	_watts
	b. Oven		=	_watts
	c. Garbage Disposal		=	_watts
	d. Clothes Dryer ³		=	_watts
	e. Dishwasher		=	_watts
	f. Other:		=	_watts
	g. Other:		=	_watts
	h. Other:		=	_watts
	Sub-Total (Lines 1-	-4) =_		_watts
5.	First 8,000 watts @ 100%		=	_watts
6.	Balance (sub-total – 8,000) @ 40%		=	_watts
7.4	Air conditioning @ 100% =watts			
	Central space heating @ $100\% =$ watts			
	~ 4 Space heaters @ 100% =walls			
	>+ Opace heaters @ 100 // =watts		=	_watts
	Total (Lines 5-7)	=		_watts
Convert to amps by dividing by 240 volts (A = w/v) =				_amps

¹ Use outside dimensions

² If values are given in amps, multiply by volts to obtain watts (w = axv)

³ Minimum 5000 watts

⁴ Use larger connected load of A/C or space heating, not both. Heat pumps are calculated at 100% or 65% if the heat pump is supplementary.